どうもこちらではお久しぶりです
自分、以前は喫煙者で
喫煙パワーで文章書くのが趣味でしたが
禁煙しました。禁煙してからあんまり文章書いてないっす
お金もかかるし、健康にも悪いし
なんとか禁煙出来ました
と、筆無精を煙草のせいにしたところでw
最近、電卓を始めました
簿記でも勉強しようかな。と、電卓買ったんですけど
簿記の勉強が進まないことは置いておいてw
電卓があるとたまに計算したくなる時便利なんですよ
たまに計算したくなることないっすか?
今日はたまにしたくなった計算の話
3乗したら2になる数はいくらか計算するのめんどそうですよね
で、近似値の計算方法を考えました
2のルート=約1.41421356
いやいやルートボタン押すだけだからもっと近い値を表現してくれるんですがw
2のルートのルート=約1.1892
2のルートのルートのルート=約1.0905
2のルートのルートのルートのルート=約1.04427
これで16乗すると2になる値が出ます
これを5乗すると更に3乗すると
2になる値の近似値が出ますw
なんとなく紙に書いたりでもしながら理解してくださいなw
いやいや、16乗すると2になる値の5乗が約3乗すると2になる数だということをね
少数の計算はPCの電卓アプリでやってみるといいかも
やってみますね
1.04427×1.04427=1.0905
1.04427×1.04427×1.04427=1.13878
1.04427×1.04427×1.04427×1.04427=1.18919
1.04427×1.04427×1.04427×1.04427×1.04427=1.241835
ですねw 電卓上ではもちっと精度の高い計算になってますがw
で、1.241835×1.241835×1.241835=約1.9151
なんと1.9までの精度で演算出来ますw
他には16乗すると2になる値の3乗は約5乗すると2になる数になります
やってみましょうか
1.04427×1.04427×1.04427=約1.13878
1.13878×1.13878×1.13878×1.13878×1.13878=約1.9151
みたいな計算を電卓ポチポチしながら遊んでたのでした
この原理でいけば1024乗すれば2になる値とかを使えば
もっと精度の良い演算が出来そうですな
プログラム組んだら出来そう
近いうちにやってみたいですね
論文を書いて英訳して学術雑誌に投稿したいブログ
2018年9月9日日曜日
2016年12月27日火曜日
無限
宇宙にはどこかまでとか そーゆーのありそうですが
たぶんアレです。無限です
どこまでとかじゃなく無限なんだってば
そー考えるとアレです
宇宙の始まりもアレです。無限です
いや無限分の1です
分子が無限なんです
昔書いた気もしますが、アレです
タンジェントです
Y軸にもX軸にも
無限で近づくんです
ここらであれですな
もう一度無限の概念について考え直すきっかけかも
宇宙はものすごい速さで広がってるみたいですが
宇宙に端の方はどういう仕組みなんでしょうか
たぶんアレです
価格が0に限りなく近い値段の空間みたいかんじでしょう
銀河系の全価格で1光年四方1万円で買えるなら
どれだけ買えるのか? 0に限りなく近いから
ものすごい量を買ってしまったみたいな話w
たぶんアレです。無限です
どこまでとかじゃなく無限なんだってば
そー考えるとアレです
宇宙の始まりもアレです。無限です
いや無限分の1です
分子が無限なんです
昔書いた気もしますが、アレです
タンジェントです
Y軸にもX軸にも
無限で近づくんです
ここらであれですな
もう一度無限の概念について考え直すきっかけかも
宇宙はものすごい速さで広がってるみたいですが
宇宙に端の方はどういう仕組みなんでしょうか
たぶんアレです
価格が0に限りなく近い値段の空間みたいかんじでしょう
銀河系の全価格で1光年四方1万円で買えるなら
どれだけ買えるのか? 0に限りなく近いから
ものすごい量を買ってしまったみたいな話w
2016年9月6日火曜日
同じかんじ その2
僕がこういう考え方をした原因は
HSPでONITAMAさんの軌跡をたどろうとしたことです
OPENHSPのコードを書写し始めたことです
OPENHSPのコードを理解して
ONITAMAさんの軌跡の延長線上に何かを作るなら
ってかんじです
先輩と後輩みたいな関係ですなw
先輩の道も後輩の道も一つ
HSPをよりよくするため。みたいな
歌手の道もファンの道も
タレントの道もファンの道も一つ
きっと世界をよりよくするため
自分ずっと最悪っぽかったんですけど
こういう考え方を出来て
最悪を脱しつつある感覚を持ってます
HSPでONITAMAさんの軌跡をたどろうとしたことです
OPENHSPのコードを書写し始めたことです
OPENHSPのコードを理解して
ONITAMAさんの軌跡の延長線上に何かを作るなら
ってかんじです
先輩と後輩みたいな関係ですなw
先輩の道も後輩の道も一つ
HSPをよりよくするため。みたいな
歌手の道もファンの道も
タレントの道もファンの道も一つ
きっと世界をよりよくするため
自分ずっと最悪っぽかったんですけど
こういう考え方を出来て
最悪を脱しつつある感覚を持ってます
同じかんじ
自分、ここんとこ 相対性と銘うって
要素の関係について書いていました
要素の関係というと要素が異なる故です
理解はいらない共感して
あなたが昨日見た夢の話をして
矢井田瞳「Maze」
という訳で、今回は
要素の同一性について考察してみます
・親と子供の同一性
子供は子供、親は親
自分はずっとそんなんでした
でもたぶんそれじゃダメなんです
子供の道も親の道も一緒
そう思えたら親孝行になれるでしょうし
親も子供の視点で考えられるでしょうし
子供も親の視点で考えられるでしょう
子供は子供の面のみ 親は親の面のみ
それしか備えなかったなら 殺伐としますよね
そうかそういう視点が忘れられているから
殺伐とした社会になってしまったのかも
AがあってBがあって AもBを兼ね BもAを兼ねる
仏教的で非論理的な考えですね
そういう考え方は日本の良いところだったのでしょう
欧米化されて非効率な考え方をされていますが
それがないと相手を思いやれませんよね
親の道と子供の道の同一性
夫の道と妻の道の同一性
教師の道と生徒の道の同一性
上司の道と部下の道の同一性
歌手の道とファンの道の同一性
タレントの道とファンの道の同一性
そういうのを大事にしてこそ
相手のことを思いやれると思います
要素の関係について書いていました
要素の関係というと要素が異なる故です
理解はいらない共感して
あなたが昨日見た夢の話をして
矢井田瞳「Maze」
という訳で、今回は
要素の同一性について考察してみます
・親と子供の同一性
子供は子供、親は親
自分はずっとそんなんでした
でもたぶんそれじゃダメなんです
子供の道も親の道も一緒
そう思えたら親孝行になれるでしょうし
親も子供の視点で考えられるでしょうし
子供も親の視点で考えられるでしょう
子供は子供の面のみ 親は親の面のみ
それしか備えなかったなら 殺伐としますよね
そうかそういう視点が忘れられているから
殺伐とした社会になってしまったのかも
AがあってBがあって AもBを兼ね BもAを兼ねる
仏教的で非論理的な考えですね
そういう考え方は日本の良いところだったのでしょう
欧米化されて非効率な考え方をされていますが
それがないと相手を思いやれませんよね
親の道と子供の道の同一性
夫の道と妻の道の同一性
教師の道と生徒の道の同一性
上司の道と部下の道の同一性
歌手の道とファンの道の同一性
タレントの道とファンの道の同一性
そういうのを大事にしてこそ
相手のことを思いやれると思います
2016年8月18日木曜日
2016年6月24日金曜日
関数と結果
あなたは論理演算は得意ですか?
僕は苦手ですが普通こんなもんだろってかんじですw
論理演算ってアレですよorとかandとかの計算
特にbit論理演算とかはよくわからないですねw
で、思ったんですけど
なんでこう。論理のみに集中して考えられないのか?と
で、答えは
論理を考える時は 論理の状況を混ぜて考えてしまいます
論理だけに集中せずに その論理は導き出した 原因とかが混ざっちゃうんですね
でもなんとなく論理には因が深く関わっているのではないか?と
複素数とか 実態をよくつかめないですよね
つかめないから 虚数という概念なんですが
虚数とはどこぞの関数の解である
そういう考え方もあるのでないかと
xiとか単項だと二乗するとマイナスな値だ。とわかりやすいんですが
xi+yとかになると想像出来ないです。どういう値か
なのでxi+yが解の一つである方程式とセットで扱うのはどうでしょうか
解が複素数ならまだしも
関数に複素数が混ざっている方程式は
4次方程式の解であるという情報もセットにするといいかもですね
4次方程式に関数が混ざっている場合は
8次方程式の解という見方をすると
解の半分は与えられているので解けそうなかんじもします
例えばアインシュタインの思考実験の場合
ここにあるものと 移動してきてここを通過しているものは異なるのですが
解がここであっても 因となる方程式が異なるので
異なるのではないかという考え方はどうでしょうか
僕は苦手ですが普通こんなもんだろってかんじですw
論理演算ってアレですよorとかandとかの計算
特にbit論理演算とかはよくわからないですねw
で、思ったんですけど
なんでこう。論理のみに集中して考えられないのか?と
で、答えは
論理を考える時は 論理の状況を混ぜて考えてしまいます
論理だけに集中せずに その論理は導き出した 原因とかが混ざっちゃうんですね
でもなんとなく論理には因が深く関わっているのではないか?と
複素数とか 実態をよくつかめないですよね
つかめないから 虚数という概念なんですが
虚数とはどこぞの関数の解である
そういう考え方もあるのでないかと
xiとか単項だと二乗するとマイナスな値だ。とわかりやすいんですが
xi+yとかになると想像出来ないです。どういう値か
なのでxi+yが解の一つである方程式とセットで扱うのはどうでしょうか
解が複素数ならまだしも
関数に複素数が混ざっている方程式は
4次方程式の解であるという情報もセットにするといいかもですね
4次方程式に関数が混ざっている場合は
8次方程式の解という見方をすると
解の半分は与えられているので解けそうなかんじもします
例えばアインシュタインの思考実験の場合
ここにあるものと 移動してきてここを通過しているものは異なるのですが
解がここであっても 因となる方程式が異なるので
異なるのではないかという考え方はどうでしょうか
2015年12月23日水曜日
方程式をねじまげるw
今、記事をアップした後
以前書いた記事を流し読みしてました
力は方程式を変える要素だ みたく書いたんですけど
(x-1)(x-2)(x-3)=0
みたい方程式をx=0という解へ捻じ曲げるって
どういう現象なのだろうかw
僕には演算が思い浮かばなくて
丸投げ投稿でしたw
以前書いた記事を流し読みしてました
力は方程式を変える要素だ みたく書いたんですけど
(x-1)(x-2)(x-3)=0
みたい方程式をx=0という解へ捻じ曲げるって
どういう現象なのだろうかw
僕には演算が思い浮かばなくて
丸投げ投稿でしたw
登録:
投稿 (Atom)